
In normal situation

- · Regular monitoring of mountain slope (once a quarter) *an assessment for every year
- · Monitoring of conditions of principal facilities (once a quarter) *Harbor facilities, Airport, Reclamation, Wide, ground subsidence etc.
- · Land deformation (development) Annual Monitoring
- · Monitoring of dead trees (every summer)

Monitoring of deformation of Aonitoring of mountain slop infrastruc

FUTURE PROSPECT / ACHIEVEMENT

We are developing AI system that can predict the risk of disaster by combining basic information such as slope topography, geological characteristics, disaster history, and rainfall records with minute deformation data from satellite images. (Scheduled to start in April 2022)

2D/3D mode switchable

We visualize deformation clearly by nalyzing SAR satellite data

Project record

6

Project name	Contractor	Period	Key words
Inundation area research / analysis study work using satellite images	Ministry of Land, Infrastructure, Transport and Tourism, Chubu Regional Development Bureau	2020 2021	Disaster, flooded area, landslide, Utilization of SNS
Advanced satellite remote sensing data utilization model demonstration project to the problem solution	Cabinet Office Space Development Strategy Promotion Secretariat	2020	Normal situation, Infrastructure monitoring, Airport, Small reflector
River erosion control technology development research (river/ water disaster technical field) prevention	Ministry of Land, Infrastructure, Transport and Tourism National Institute for Land and Infrastructure Management	2019 2020 2021	Normal situation, River channel management, embankment management
Demonstration of infrastructure displacement monitoring technology by SAR satellite and Survey on promotion of international cooperative use of frequencies through overseas expansion.	Ministry of Internal Affairs and Communications Comprehensive Communication Infrastructure Bureau	2020	Normal situation, infrastructure monitoring, small reflector

Mml-siscenter@dx.n-koei.co.jp () www.n-koei.co.jp/english/ ©2021ZENRIN CO.,LTD.

First edition: July 19th, 2021 Update: December 17th, 2021

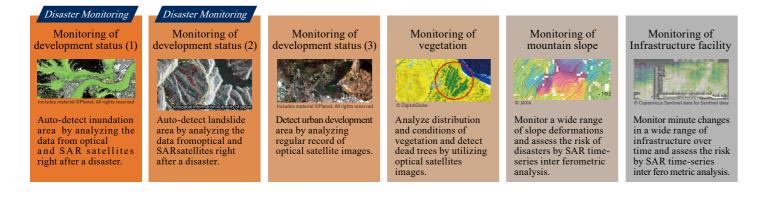
Image is for illustration purpose

BACKGROUND OF COMMERCIALIZATION

Leading companies from three industries (satellite business, map business, and construction consultants) made a new business partnership to develop "Satellite Anti-Disaster Information Service."

OVERVIEW OF SATELLITE REMOTE SENSING

Sensors installed on satellites give us data on the surface of the earth.


There are two types of satellites: optical satellites, which are good for observation of color or shape of an object, and SAR satellites, suitable for observation of its material or minute changes over time.

Advantages of satellite technology are "to observe repeatedly the entire globe at regular intervals with same accuracy." In addition, past observation data is archived and can be used for analyzing the past.

- It observes the sunlight reflected from an object.
- The color, size, or shape of the object can be determined.
- The Image is like an aerial photograph.
- Observation under clouds or at night is impossible.
- It observes the reflection of microwaves irradiated by itself.
- The presence of an object, its material, or changes can be determined.
- It can be used regardless of clouds or night-time conditions.
- Since the images are taken under the same conditions, it is suitable for observing changes of an object.

By utilizing the characteristics data of the two types of satellites, it is possible to analyze and evaluate information you want.

SAMPLE CASE AT THE TIME OF A DISASTER

Optical Satellites

Observation of Inundation area

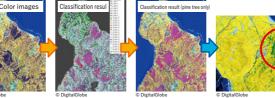
Detect inundation area by analyzing satellite images after disaster and overlaying them on the Zenrin map and providinge disaster information such as the number of flooded houses.

Observation of landslide area

Detect landslide area through the analysis of optical satellite images.

USE CASE IN NORMAL SITUATION

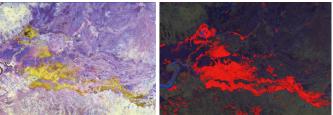
Optical Satellites


Monitoring of development status

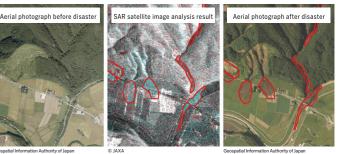
Monitor status of deforestation and urban development by analyzing regular record of optical satellite images. The higher resolution that the satellite images have; Even the smaller the changes that can be captured.

Monitoring of vegetation

Analyze the spectral information obtained from optical images to detect classification inside of plant colonies and dead tree colonies. Risks can be assessed by monitoring the vegetation overgrowth in the security area and the condition of dead trees on the slopes around the facility.

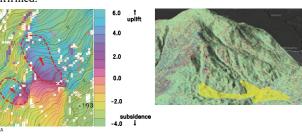


SAR Satellites


Observation of Flooded area

As a characteristic of SAR satellite observation, the water is not detected and only shown as a dark. Using this characteristic, it is possible to find out flooded area even in during rain or at night.

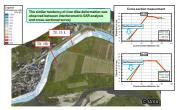
Observation of Landslide area


Find out landslide area by overlaying SAR satellite images of before disaster and after disaster.

SAR Satellites

Monitoring of mountain slope

Slope deformations are monitored by regular SAR satellite observations. Our strength is the ability to quantitatively observe a wide area. Engineers evaluate the risk of landslides on slopes where deformation has been confirmed



Monitoring of Infrastructure facility

Monitor minute changes in large infrastructure facilities with SAR satellites. Below is a monitoring of an airport (left figure) and a river embankment (right figure). By improving the conventional algorithm, the accuracy and stability of the analysis have been improved.

